RYZYKO SZCZEPIEŃ JEST SŁABO POZNANE I MOŻE BYĆ ZBYT WYSOKIE

Autor: dr n. med. Piotr Witczak
Konsultacja: dr Mariusz Błochowiak, lek. Paweł Basiukiewicz, lek. Marek Błażejak

fragment artykułu
całość tutaj

Z uwagi na niewielką i w dodatku niepewną korzyść ze szczepienia dzieci przeciwko COVID-19, na znaczeniu zyskują kwestie bezpieczeństwa i niedogodności związane z takim rodzajem profilaktyki. Należy podkreślić, że szczepionki są podawane zdrowym ludziom, a więc tolerancja na zdarzenia niepożądane, nawet te rzadkie, jest niska [1].

Analiza dostępnych danych klinicznych [2,3] w przeliczeniu na milion zaszczepionych nastolatków wskazuje, że dzięki tej profilaktyce zapobiegniemy ok 16 tysiącom objawowych przypadków COVID-19 (w ogromnej większości o przebiegu łagodnym i umiarkowanym), unikniemy kilkuset hospitalizacji (w większości prawdopodobnie łagodnych lub niezwiązanych z COVID-19) i co najwyżej kilku zgonów, ale narazimy ok 900 tysięcy dzieci na co najmniej jedną reakcję układową związaną z iniekcją preparatu (w większości krótkotrwała i łagodna), w tym 200 tysięcy rozwinie gorączkę powyżej 38 stopni, kilkaset tysięcy będzie odczuwało zmęczenie, ból głowy, dreszcze, ból mięśni lub stawów w stopniu przejściowo wpływającym lub uniemożliwiającym codzienną aktywność. Ponadto, ponad 500 tysięcy nastolatków będzie wymagało zastosowania leków przeciwgorączkowych lub przeciwbólowych. Należy również podkreślić, że reakcje niepożądane związane ze szczepieniem przeciwko COVID-19 występują częściej w młodszych grupach wiekowych niż starszych [4,5], co dodatkowo działa na niekorzyść bilansu zysków i strat. Co więcej, profil bezpieczeństwa interwencji w warunkach rzeczywistych zazwyczaj wypada gorzej niż w kontrolowanych badaniach klinicznych [6].

Obok przejściowych reakcji układowych związanych z podaniem szczepionki występuje również ryzyko znanych i nieznanych działań niepożądanych. Wydaje się, że zdarzenia niepożądane związane z podaniem szczepionki przeciwko COVID-19 są stosunkowo rzadkie, ale można mieć wątpliwości czy wystarczająco rzadkie, aby ryzyko nie przewyższało niewielkiej korzyści ze szczepień dzieci przeciwko COVID-19. Wiele działań niepożądanych może wystąpić w przyszłości lub nie zostać wykryta, ponieważ zgłaszalność niepożądanych odczynów poszczepiennych (NOP) jest prawdopodobnie niska. W 2007 roku CDC sfinansowało badanie przeprowadzone przez Harvard Pilgrim Health Care trwające przez trzy lata z udziałem 715 000 pacjentów, w którym stwierdzono, że „raportowanych jest mniej niż 1% zdarzeń niepożądanych związanych ze szczepieniami” [7]. Niestety, na tle Europy standardy raportowania skutków ubocznych szczepionek w Polsce pozostawiają wiele do życzenia. Podczas gdy średnia europejska wynosi 127 indywidualnych zgłoszeń skutków ubocznych na 100 000 szczepień przeciwko COVID-19, to na przykład w Holandii rejestruje się 701 zgłoszeń na 100 000 szczepień, a w Polsce tylko 15 (!) zgłoszeń na 100 000 szczepień [8]. Z pewnością tak duża różnica nie wynika ze zróżnicowanej krajowej podatności na skutki uboczne. Zgodnie z ostatnimi doniesieniami [8], pomimo niedoszacowanej zgłaszalności NOP, zestawienie skuteczności bezwzględnej szczepionek przeciwko COVID-19 z liczbą zgłaszanych skutków ubocznych do holenderskiego rejestru Lareb [9], sugeruje podobny rząd wielkości ryzyka i korzyści wynikający z tej profilaktyki („należy zaakceptować 4 śmiertelne i 16 poważnych skutków ubocznych na 100 000 szczepień, aby uratować życie 2–11 osób na 100 000 podanych szczepionek”). Autorzy tego badania zasugerowali konieczność przemyślenia polityki związanej ze szczepieniami przeciwko COVID-19 na przykład poprzez proponowanie szczepień osobom, które są gotowe zaakceptować ryzyko i czują się bardziej zagrożone ze strony naturalnej infekcji niż szczepienia. Powyższe wnioski dotyczą ogółu szczepionej populacji i są tym bardziej niepokojące w odniesieniu do populacji pediatrycznej, gdzie ryzyko związane ze szczepieniami przeciwko COVID-19 może być większe, a korzyści mniejsze. Niestety publikacja [8] została wycofana pod głównym zarzutem braku związku przyczynowo skutkowego między zdarzeniem zgłaszanym do rejestru a szczepieniem, autorzy publikacji jednak nie zgodzili się z decyzją redakcji [b]. To prawda, że nie ma udowodnionego związku przyczynowego między szczepieniem a zdarzeniem niepożądanym zgłoszonym do bazy, ale wiele potencjalnych działań niepożądanych w rzeczywistości nie jest zgłaszana [7], a po stronie korzyści ze szczepień nie uwzględnia się faktu, że wiele zgonów kwalifikowanych jako COVID-19 w praktyce jest związanych inną przyczyną [a]. Wydaje się, że na obecną chwilę nie ma również innego bardziej wiarygodnego sposobu, aby chociaż poglądowo ocenić rzeczywistą korzyść versus ryzyko programów szczepień przeciwko COVID-19.

Dostępna dla dzieci szczepionka przeciwko COVID-19 opiera się na białku kolca (spike), które ma udokumentowane właściwości toksyczne, zarówno gdy jest elementem wirionu SARS-CoV-2, jak i bez komponentu wirusowego (w wyniku podania szczepionki białko kolca produkowane jest przez komórki osoby zaszczepionej) . Seria ostatnich publikacji naukowych dostarcza dowodów na to, że białko kolca SARS-CoV-2 może być odpowiedzialne za przynajmniej część uszkodzeń, które występują w ciężkich przypadkach COVID-19 [11]. Dzieje się tak, ponieważ istnieje wiele komórek innych niż te w płucach i drogach oddechowych, które posiadają receptor białka kolca, znany jako receptor ACE2. Przede wszystkim płytki krwi i komórki wyściełające naczynia krwionośne mogą przejawiać wysoką ekspresję tego receptora. Sekcje zwłok wykonane u pacjentów, którzy zmarli z powodu ciężkiego COVID-19, ujawniły, że wolne białko kolca z SARS-CoV-2, a nie cały nienaruszony wirion, było odpowiedzialne za znaczne uszkodzenia w całym ciele [12].

Kiedy białko spike wiąże się z receptorami komórek gospodarza, może dojść do aktywacji układu dopełniacza [13], aktywacji i zlepiania płytek krwi [14,15], ekspresji białek odpowiedzialnych za śmierć komórek [12], nadprodukcji cytokin przez komórki układu krwionośnego (tzw. „burza cytokinowa”) [12,16], co spowoduje stan zapalny w obrębie naczyń krwionośnych [13] i/lub zakrzepicę [15]. Aktualnie jeszcze niedopuszczona do stosowania u dzieci szczepionka wektorowa, może powodować uszkodzenie układu naczyniowego przez białka kolca podobnie jak SARS-CoV-2, autorzy nazwali ten efekt „zespołem mimikry COVID-19 wywołanym przez szczepionkę”[17]. Ponadto białko kolca jest zdolne do dysocjacji na dwie mniejsze podjednostki (S1 i S2), które mogą przekroczyć barierę krew-mózg i powodować jego uszkodzenie [18]. Rzeczywiście, w mózgach ludzi zmarłych z powodu COVID-19, którzy prezentowali objawy ze strony układu nerwowego, stwierdzono obecność białka kolca, nie wykazano natomiast obecności całej nienaruszonej jednostki wirusa [19]. Warto zaznaczyć, że w pierwszym na ludziach badaniu szczepionki BNT162b1 (wcześniejszego prototypu szczepionki Pfizer BioNTech BNT162b2 używanej obecnie), która kodowała podjednostkę S1 białka kolca wiążącego się z receptorami ACE2, liczba płytek krwi spadała po szczepieniu zarówno u młodych dorosłych, jak i osób starszych [20].

Według artykułu Seneffa i Nigha [10] potencjalne ciężkie i długoterminowe skutki uboczne szczepień przeciwko COVID-19 mogą obejmować patogenne torowanie, wieloukładową chorobę zapalną i autoimmunizację, reakcje alergiczne i anafilaksję, wzmocnienie zależne od przeciwciał, aktywację utajonych infekcji wirusowych, neurodegenerację i choroby prionowe, pojawienie się nowych wariantów SARS-CoV-2, integrację genu białka kolca z ludzkim DNA.

Raport firmy Pfizer/Biontech [21] przekazany rządowi japońskiemu, na który powołano się w artykule opublikowanym w British Medical Journal [22], zawiera dane dotyczące biodystrybucji nanocząstek lipidów wykorzystanych do wprowadzania (transfekcji) mRNA do komórek osoby zaszczepionej przeciwko COVID-19. Wykorzystana w tych testach „imitacja szczepionki” krążyła we krwi i trafiała do takich miejsc, jak śledziona, wątroba, jajniki, nadnercza i szpik kostny, jądra, płuca, jelita, nerki, tarczyca, przysadka mózgowa, macica, inne. W tym kontekście warte rozważenia jest nie tylko ryzyko autoimmunizacji związane z odkładaniem się nanomateriałów lipidowych w różnych narządach, ale biorąc pod uwagę potencjalną toksyczność białka kodowanego przez mRNA, należy również ocenić potencjał uszkodzenia narządów i tkanek w wyniku krążącego materiału szczepionkowego [23].

Ocena 13 pracowników ochrony zdrowia pod kątem obecności białka kolca we krwi po otrzymaniu szczepionki Moderna (szczepionka mRNA z zasadniczo identyczną technologią jak Pfizer/BioNTech) wykazała krążące we krwi białko kolca u 3 z 13 osób oraz łączący się z receptorem ACE fragment białka spike u 11 z 13 osób [24]. Białko kolca można było wykryć we krwi do dwóch tygodni po szczepieniu u większości osobników i 28 dni po szczepieniu w jednym przypadku. Białko krążące nawet w niskim stężeniu przez okres do dwóch lub więcej tygodni może z czasem gromadzić się na komórkach, ponieważ krew stale przepływa przez tkanki ciała. Badania biodystrybucji potwierdzają, że białko kolca może być potencjalnie skoncentrowane w wielu tkankach, czego nie da się ustalić na podstawie analizy samej krwi [23]. Pojawiły się również doniesienia wskazujące, że mRNA można wykryć nawet w mleku matki po szczepieniu [25]. Białka krążące we krwi zwykle są zagęszczane w mleku matki. W amerykańskiej bazie VAERS można znaleźć raporty zdarzeń u niemowląt doświadczających krwawienia z przewodu pokarmowego po karmieniu piersią przez matkę, która otrzymała szczepionkę przeciwko COVID-19 [23]. Niewątpliwie, konieczne jest przeprowadzenie dodatkowych badań w celu oceny biodystrybucji białek kolca w organizmie człowieka po szczepieniu [22], ale to powinno mieć miejsce przed uruchomieniem programów masowej immunizacji.

W szczepionkach przeciwko COVID-19 stosowany jest PEG, związek stosowany jako substancja pomocnicza w lekach i uznany za rzadką, „ukrytą” przyczynę reakcji IgE-zależnych i nawracającej anafilaksji [26]. Obecność lipidu PEG 2000 w szczepionkach mRNA wzbudziła obawy, że ten składnik może być powiązany z anafilaksją. Jak dotąd żadna inna szczepionka zawierająca PEG jako substancję czynną nie była szeroko stosowana. Wydaje się, że ryzyko uczulenia jest większe w przypadku leków do iniekcji zawierających PEG o wyższej masie cząsteczkowej. W opisach przypadków odnotowano anafilaksję związaną z preparatami jelitowymi zawierającymi PEG 3350 do PEG 4000 [27,28]. Dodanie PEG do nanocząstek lipidowych zapobiega ich strawieniu przez komórki w całym organizmie, zwłaszcza przez komórki układu odpornościowego, które ograniczyłyby dystrybucję ładunku mRNA [29,30]. Dodanie PEG do nanocząstek lipidowych zostało okrzyknięte przełomem, ponieważ „efekt ten jest znacznie większy niż obserwowany wcześniej w przypadku konwencjonalnych liposomów i wiąże się z ponad 5-krotnym wydłużeniem czasu krążenia liposomów we krwi” [29]. Prawdopodobnie usunięcie PEG ze szczepionek zwiększyłoby szansę na pozostanie substancji czynnej tylko w miejscu wstrzyknięcia i zapewniłoby bardziej kontrolowaną odpowiedź immunologiczną [23].

Niektórzy naukowcy sugerowali, że białko kolca SARS-CoV-2 może składać się z fragmentów bardzo podobnych do białek w naszym organizmie [31]. Jeśli to się potwierdzi, to odporność na białko kolca może teoretycznie prowadzić do rozwoju chorób autoimmunologicznych. Dotychczas wykazano istnienie reakcji krzyżowej między przeciwciałami indukowanymi przeciwko białku kolca a kilkoma białkami gospodarza [32]. Choroby autoimmunologiczne mogą rozwijać się latami, zanim objawy staną się widoczne [33,34]. Ponadto, szeroka dystrybucja szczepionki mRNA w organizmie implikuje inne mechanizmy, które mogą prowadzić do choroby autoimmunologicznej opisane w [23].

Niedawno w Izraelu zaistniały podejrzenia o związku między szczepionkami COVID-19 a zapaleniem mięśnia sercowego (myocarditis) u dzieci i młodych dorosłych [34]. Rzeczywiście, ten potencjalny związek jest aktywnie badany przez Europejską Agencję Leków [35], a także przez CDC w USA [36]. Według wstępnych raportów [36] poszczepienne przypadki myocarditis wśród dzieci i młodych dorosłych występują rzadko, ale nawet pomimo niskiej zgłaszalności jest ich wielokrotnie więcej niż przewidywano, w szczególności u osób płci męskiej w wieku 12-24 lata (większość przypadków zapalenia serca wystąpiła w ciągu 4 dni od podania preparatu). Zdaniem Association of American Physicians and Surgeons poszczepienne zapalenie osierdzia u zdrowych młodych osób może być trudne do wykrycia, a wczesna diagnoza i leczenie są istotne w zapobieganiu długotrwałych uszkodzeń [37]. Potencjalny mechanizmy zapalenia mięśnia sercowego po szczepieniu opartym na mRNA może polegać na nieswoistej wrodzonej odpowiedzi zapalnej lub mechanizmie mimikry molekularnej między wirusowym białkiem kolca a nieznanym białkiem serca [38]. Zgodnie z aktualnymi rekomendacjami, w oczekiwaniu na publikację długoterminowych danych dotyczących konsekwencji zapalenia mięśnia sercowego związanego ze szczepionką mRNA przeciwko COVID-19 sugeruje się powstrzymanie od uprawiania sportów wyczynowych przez okres 3-6 miesięcy z ponowną oceną przed rozpoczęciem tej aktywności [39]. Do bazy VAERS [40] zgłoszono ponad 5 tysięcy przypadków bólu w klatce piersiowej i kilkaset przypadków zapalenia mięśnia sercowego na 129 milionów osób w pełni zaszczepionych [38], nie wiadomo jednak ile takich zdarzeń nie zaraportowano oraz jakie będzie długoterminowe ryzyko sercowo-naczyniowe wśród zaszczepionej populacji dzieci i młodych dorosłych. Ponieważ szczepionki są podawane zdrowym ludziom, co do zasady istnieje niska tolerancja na zdarzenia niepożądane, nawet te rzadkie [1], co potwierdzają wcześniejsze doświadczenia. Na przykład rok po wprowadzeniu szczepionki MMRV w 2006 roku, po podaniu około 43 000 dawek, Vaccine Safety Datalink wykrył możliwość jednego dodatkowego napadu gorączkowego na 2000 dzieci zaszczepionych MMRV. Doprowadziło to do zmiany zaleceń krajowych, które usunęły preferencję dla szczepionki MMRV w stosunku do oddzielnych szczepionek MMR i ospy wietrznej [19]. W ciągu roku od wprowadzenia szczepionki Rotashield do bazy VAERS zgłoszono 15 przypadków wgłobienia. Bardziej systematyczne badanie z wykorzystaniem Vaccine Safety Datalink wykazało, że szczepionka Rotashield wiązała się ze zwiększonym ryzykiem wgłobienia u niemowląt. Amerykański Komitet Doradczy ds. Praktyk Szczepień (ACIP) głosował 22 października 1999 r. za zaprzestaniem stosowania szczepionki Rotashield u niemowląt ze względu na związek między szczepionką a wgłobieniem [41]. Tym bardziej zatem dziwi fakt, że pomimo ewidentnego związku i wyraźnie podwyższonego ryzyka zapalenia mięśnia sercowego po szczepionce mRNA Pfizer/Biontech program szczepień dzieci przeciwko COVID-19 nie został wstrzymany.

Wiele obaw budzi możliwość wystąpienia nieznanych poważnych długoterminowych zdarzeń niepożądanych, na przykład związanych z płodnością i wpływem na potomstwo, które mogą ujawnić się dopiero przy staraniu się i/lub po poczęciu dziecka [23]. Dotychczas do bazy VAERS zgłoszono kilkadziesiąt samoistnych poronień po szczepieniu przeciwko COVID-19, ale wstępne ustalenia dotyczące bezpieczeństwa szczepionki mRNA przeciwko COVID-19 u kobiet w ciąży nie wykazały „wyraźnych sygnałów bezpieczeństwa”, przy czym autorzy podkreślają konieczność dalszej oceny wpływu szczepienia przeciwko COVID-19 na matkę, ciążę, noworodka i dzieciństwo, w tym we wcześniejszych stadiach ciąży i w okresie przed poczęciem [42]. Wynika z tego, że program szczepień przeciwko COVID-19 realizowany jest w populacji dzieci i dorosłych w wieku rozrodczym bez upewnienia się co do braku wpływu na powyższe.

[a] Pulla, Priyanka. „What counts as a covid-19 death?.” bmj 370 (2020). https://www.bmj.com/content/370/bmj.m2859

[b] https://www.mdpi.com/2076-393X/9/7/729/htm

[1] Avorn J, Kesselheim AS. Up is down—pharmaceutical industry caution vs. federal acceleration of Covid-19 vaccine approval. N Engl J Med. 2020 Sep 15

[2] https://www.cdc.gov/vaccines/covid-19/info-by-product/pfizer/reactogenicity.html#persons-12-15yrs

[3] Frenck Jr, Robert W., et al. „Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents.” New England Journal of Medicine (2021). https://www.nejm.org/doi/full/10.1056/NEJMoa2107456

[4] Castells, Mariana C., and Elizabeth J. Phillips. „Maintaining safety with SARS-CoV-2 vaccines.” New England Journal of Medicine 384.7 (2021): 643-649. https://www.nejm.org/doi/full/10.1056/nejmoa2034577

[5] Bae, Seongman, et al. „Adverse reactions following the first dose of ChAdOx1 nCoV-19 vaccine and BNT162b2 vaccine for healthcare workers in South Korea.” Journal of Korean medical science 36.17 (2021). https://jkms.org/DOIx.php?id=10.3346/jkms.2021.36.e115

[6] Seruga, Bostjan, et al. „Under-reporting of harm in clinical trials.” The Lancet Oncology 17.5 (2016): e209-e219 https://www.sciencedirect.com/science/article/abs/pii/S1470204516001522

[7] Ross Lazarus et al., Electronic Support for Public Health–Vaccine Adverse Event Reporting System (ESP:VAERS) (Rockville, MD: The Agency for Healthcare Research and Quality, prepared by Harvard Pilgrim Health Care, Inc., 2010), 6, https://healthit.ahrq.gov/sites/default/files/docs/publication/r18hs017045-lazarus-final-report-2011.pdf

[8] Walach, Harald, Rainer J. Klement, and Wouter Aukema. „The Safety of COVID-19 Vaccinations—We Should Rethink the Policy.” Vaccines 9.7 (2021): 693. https://www.mdpi.com/2076-393X/9/7/693/htm

[9] https://www.lareb.nl/coronameldingen

[10] Seneff, Stephanie, and Greg Nigh. „Worse Than the Disease? Reviewing Some Possible Unintended Consequences of the mRNA Vaccines Against COVID-19.” International Journal of Vaccine Theory, Practice, and Research 2.1 (2021): 38-79. https://ijvtpr.com/index.php/IJVTPR/article/view/23

[11] Lei, Y. et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circulation research 128, 1323-1326 (2021). https://www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.121.318902

[12] Magro, C.M. et al. Severe COVID-19: A multifaceted viral vasculopathy syndrome. Annals of diagnostic pathology 50, 151645 (2021). https://www.sciencedirect.com/science/article/abs/pii/S109291342030191X

[13]. Yu, J. et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 136, 2080-2089 (2020). https://ashpublications.org/blood/article/136/18/2080/463611/Direct-activation-of-the-alternative-complement

[14] Zhang, S. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 13, 120 (2020). https://jhoonline.biomedcentral.com/articles/10.1186/s13045-020-00954-7

[15] Grobbelaar, L.M. et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: Implications for microclot formation in COVID-19. medRxiv, 2021.2003.2005.21252960 (2021). https://www.medrxiv.org/content/10.1101/2021.03.05.21252960v1

[16] Hsu, A.C.-Y. et al. SARS-CoV-2 Spike protein promotes hyper-inflammatory response that can be ameliorated by Spike-antagonistic peptide and FDA-approved ER stress and MAP kinase inhibitors <em>in vitro</em>. bioRxiv, 2020.2009.2030.317818 (2020). https://www.biorxiv.org/content/10.1101/2020.09.30.317818v1.abstract

[17] Kowarz, Eric, et al. „“Vaccine-Induced Covid-19 Mimicry” Syndrome: Splice reactions within the SARS-CoV-2 Spike open reading frame result in Spike protein variants that may cause thromboembolic events in patients immunized with vector-based vaccines.” (2021). https://www.researchsquare.com/article/rs-558954/v1

[18] Rhea, E.M. et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nature neuroscience 24, 368-378 (2021). https://www.nature.com/articles/s41593-020-00771-8

[19] Nuovo, G.J. et al. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Annals of diagnostic pathology 51, 151682 (2021).

[20] Li, J. et al. Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nature Medicine (2021). https://www.nature.com/articles/s41591-021-01330-9

[21] Pfizer. SARS-CoV- 2 mRNA Vaccine (BNT162, PF-07302048) 2.6.4 Yakubutsu dōtai shiken no gaiyō bun [summary of pharmacokinetic studies]. https://www.pmda.go.jp/drugs/2021/P20210212001/672212000_30300AMX00231_I100_1.pdf#page=16

[22] Doshi, P. Covid-19 vaccines: In the rush for regulatory approval, do we need more data? BMJ 373, n1244 (2021). https://www.bmj.com/content/373/bmj.n1244

[23] https://www.canadiancovidcarealliance.org/wp-content/uploads/2021/06/2021-06-15-children_and_covid-19_vaccines_full_guide.pdf

[24] Ogata, A.F. et al. Circulating SARS-CoV-2 Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clinical Infectious Diseases (2021). https://pubmed.ncbi.nlm.nih.gov/34015087/

[25] Low, Jia Ming, et al. „BNT162b2 vaccination induces SARS-CoV-2 specific antibody secretion into human milk with minimal transfer of vaccine mRNA.” medRxiv (2021). https://www.medrxiv.org/content/10.1101/2021.04.27.21256151v1.full.pdf

[26] Stone Jr, Cosby A., et al. „Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized.” The Journal of Allergy and Clinical Immunology: In Practice 7.5 (2019): 1533-1540. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706272/

[27] Stone Jr, Cosby A., et al. „Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized.” The Journal of Allergy and Clinical Immunology: In Practice 7.5 (2019): 1533-1540. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706272/

[28] Sellaturay P, Nasser S, Ewan P. Polyethylene Glycol-Induced Systemic Allergic Reactions (Anaphylaxis). J Allergy Clin Immunol Pract. 2020 Oct 1:S2213-2198(20)31007-2. doi: 10.1016/j.jaip.2020.09.029. Epub ahead of print. PMID: 33011299. https://pubmed.ncbi.nlm.nih.gov/33011299/

[29] Papahadjopoulos, D. et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88, 11460-11464 (1991). https://pubmed.ncbi.nlm.nih.gov/1763060/

[30] Gabizon, A. & Martin, F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 54 Suppl 4, 15-21 (1997). https://pubmed.ncbi.nlm.nih.gov/9361957/

[31] Kanduc, D. & Shoenfeld, Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunologic research 68, 310-313 (2020). https://pubmed.ncbi.nlm.nih.gov/32946016/

[32] Vojdani, A. & Kharrazian, D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clinical immunology (Orlando, Fla.) 217, 108480 (2020). https://pubmed.ncbi.nlm.nih.gov/32461193/

[33] Tsatsakis AM, Docea AO, Calina D, Buga AM, Zlatian O, Gutnikov S, Kostoff RN and Aschner M: Hormetic neuro-behavioral effects of low dose toxic chemical mixtures in real-life risk simulation (RLRS) in rats. Food Chem Toxicol. 125:141–149. 2019 https://pubmed.ncbi.nlm.nih.gov/30594548/

[34] Agmon-Levin N, Paz Z, Israeli E and Shoenfeld Y: Vaccines and autoimmunity. Nat Rev Rheumatol. 5:648–652. 2009 https://www.nature.com/articles/nrrheum.2009.196/

[34] https://www.ctvnews.ca/health/coronavirus/israel-sees-probable-link-between-pfizer-vaccine-and-myocarditis-cases-1.5453006

[35] https://www.ema.europa.eu/en/news/covid-19-vaccines-update-ongoing-evaluation-myocarditis-pericarditis

[36] https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-COVID-Shimabukuro-508.pdf

[37] https://aapsonline.org/covid-19-should-you-protect-your-heart-if-you-get-the-shot/

[38] Larson, Kathryn F., et al. „Myocarditis after BNT162b2 and mRNA-1273 Vaccination.” Circulation (2021). https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.055913

[39] Ammirati E, Frigerio M, Adler ED, Basso C, Birnie DH, Brambatti M, Friedrich MG, Klingel K, Lehtonen J, Moslehi JJ, et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ Heart Fail. 2020;13:e007405 https://pubmed.ncbi.nlm.nih.gov/33176455/

[40] www.wonder.cdc.gov/vaers.html

[41] https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-COVID-Shimabukuro-508.pdf

[42] Shimabukuro, Tom T., et al. „Preliminary findings of mRNA Covid-19 vaccine safety in pregnant persons.” New England Journal of Medicine 384.24 (2021): 2273-2282 https://pubmed.ncbi.nlm.nih.gov/33882218/

VI
PROGRAM SZCZEPIEŃ PRZECIWKO COVID-19 TO EKSPERYMENT MEDYCZNY

Chociaż koncepcja szczepionek mRNA pojawiła się już w 1990 roku, to przed pandemią COVID-19 taka technologia immunizacji nigdy wcześniej nie była wdrożona na rynek do masowego zastosowania u ludzi. W 2012 r. szczepionki mRNA swoiste wobec grypy i RSV były analizowane w badaniach przedklinicznych, w 2017 r. odbył się pierwszy test koncepcyjnej szczepionki mRNA na raka, a pierwsza w historii próba kliniczna fazy I szczepionki mRNA miała miejsce dopiero w 2020 r. i dotyczyła szczepienia przeciwko COVID-19 [1]

Pomimo ogłoszenia przez firmę Pfizer osiągnięcia wszystkich pierwszorzędowych punktów końcowych w toku fazy III badań klinicznych [2], opublikowania wyników [3] oraz warunkowego dopuszczenia szczepionki na rynek przez organizacje ds. zdrowia [4], aktualne programy szczepień przeciwko COVID-19 należy uznać za eksperyment medyczny z przyczyn podanych poniżej.

Po pierwsze, badanie fazy III nad skutecznością i bezpieczeństwem szczepionki Pfizer/Biontech nie zakończyło się. Zgodnie z komunikatem [5], oryginalnym protokołem [6], opublikowanym badaniem [3] i ocenami agencji regulatorowych [7] uczestnicy badania powinni być obserwowani jeszcze przez łącznie dwa lata od przyjęcia drugiej dawki preparatu. W rejestrze badań klinicznych [8] widnieje informacja, że szacunkowo badanie zakończy się dopiero 2 maja 2023 (na dzień 01.07.2021 ostatnia aktualizacja informacji w rejestrze miała miejsce 1 czerwca 2021 r.). Są tam również wymienione punkty końcowe badania, których okresy obserwacji wykraczają poza ramy czasowe analiz, na podstawie których preparat warunkowo dopuszczono na rynek. Ponadto w charakterystyce produktu leczniczego Comirnaty wskazano, że dopiero w grudniu 2023 r. zostanie przedłożony przez podmiot odpowiedzialny raport końcowy z badania klinicznego w celu potwierdzenia skuteczności i bezpieczeństwa tego produktu [9]. Pierwszego kwietnia 2021 r. firma Pfizer opublikowała kolejny komunikat z aktualizacją wyników skuteczności i bezpieczeństwa z okresu obserwacji wynoszącego 6 miesięcy i dla populacji >16 r.ż., wyniki jednak nie zostały opublikowane w recenzowanym czasopiśmie [10]. Powyższe informacje niezbicie świadczą o tym, że faza III próby klinicznej jest w toku, a skuteczność i bezpieczeństwo nie zostało potwierdzone w dłuższych okresach obserwacji. Bez tej wiedzy udział w programie szczepień należy uznać za „eksperymentalny”, w szczególności że większość dotychczas przeprowadzonych badań fazy III dla szczepionek innych niż przeciwko COVID-19 obejmowała dużą liczbę pacjentów i trwała od 1 do 2 lat [11]. W momencie przyznania szczepionce Pfizer/Biontech zezwolenia na zastosowanie warunkowe u dzieci, dla większości uczestników badania klinicznego agencje regulatorowe dysponowały danymi dotyczącymi bezpieczeństwa i skuteczności z okresu obserwacji wynoszącego tylko jeden lub dwa miesiące.

Po drugie, warunkowe/przyspieszone dopuszczenie produktu do stosowania opiera się na wątpliwej podstawie, tj. w sytuacji zagrożenia zdrowia publicznego ciało regulatorowe musi na podstawie dostępnych krótkookresowych danych klinicznych po prostu wierzyć, że „znane i potencjalne korzyści przewyższają znane i potencjalne ryzyko” [12,13]. W tym miejscu należy przypomnieć, że ryzyko związane z COVID-19 w przypadku dzieci i młodych dorosłych jest niskie.

Po trzecie, czas potrzebny na ocenę skuteczności i bezpieczeństwa szczepionek trwa zwykłe 4-10 lat i obejmuje dokładne testy in vitro, badania przedkliniczne (na zwierzętach), a następnie sekwencyjne próby kliniczne (na ludziach, fazy 1, 2 i 3). Natomiast szczepionki przeciwko COVID-19 zostały opracowane i ocenione pod kątem bezpieczeństwa i skuteczności w czasie krótszym niż jeden rok. Oznaczało to, że analizowano tylko krótkoterminowe scenariusze.

Po czwarte, badanie kliniczne trwało zbyt krótko oraz obejmowało zbyt małą liczbę uczestników, aby wykryć rzadziej występujące skutki uboczne. Przykładem może być myocarditis, które nie ujawniło się w badaniach klinicznych [14], a także problemy takie jak wstrząs anafilaktyczny (osoby z historią alergii zostały wykluczone z wczesnych badań klinicznych) i potencjalnie śmiertelne przypadki zakrzepicy, które nie zostały zidentyfikowane, dopóki większość eksperymentalnych szczepionek COVID-19 nie była szeroko stosowana w społeczeństwach [15,16]. Kolejny przykład to kampania szczepień przeciwko pandemii świńskiej grypy w 2009 r. w Finlandii i Szwecji, która przyczyniła się do wielu przypadków narkolepsji (152 w samej Finlandii) [a-d]. Przyczyną choroby była homologia między cząsteczką receptora 2 ludzkiej hipokretyny (inaczej oreksyny) a białkami obecnymi w szczepionce [e]. Ustalono to poprzez wykrycie krzyżowo reaktywnych przeciwciał w surowicy pacjentów, u których wystąpiła narkolepsja po szczepieniu przeciwko H1N1 w Europie. W próbie klinicznej fazy III nie wystąpiły żadne zgony [3], ale w ulotce szczepionki firmy Pfizer widnieje informacja, że „poważne zdarzenia niepożądane od pierwszej dawki do 30 dni po drugiej dawce w trwającym okresie obserwacji zgłosiło 0,4% biorców szczepionki i 0,1% otrzymujących placebo” [17]. Aby dostarczyć rozstrzygających dowodów, należałoby zbadać znacznie większą liczbę nastolatków, ale te ograniczone dane sugerują, że ryzyko poważnych zdarzeń niepożądanych mogło być o 0,3% wyższe w grupie zaszczepionej (nieistotne statystycznie w tak małej próbie). W przeliczeniu na milion zaszczepionych dzieci to daje 3000 poważnych zdarzeń niepożądanych, przy czym należy podkreślić, że profil bezpieczeństwa interwencji badanej w ramach badań klinicznych wypada zazwyczaj lepiej niż w rzeczywistości.

Po piąte, badanie zostało „odślepione”, co oznacza, że nie będzie już grupy placebo. Innymi słowy, rygorystyczna ocena bezpieczeństwa w kontekście dobrze kontrolowanego badania klinicznego nie jest już możliwa i należy w większym stopniu polegać na systemach nadzoru już po wdrożeniu szczepionek. To stanowi ogromne wyzwanie, ponieważ niepewna jest zarówno liczba zgłaszanych zdarzeń niepożądanych związanych ze szczepionką, jak i występowanie danego zdarzenia ogólnie w populacji (tło). Co więcej, niezwykle trudno jest definitywnie udowodnić, że zdarzenie jest spowodowane (a nie tylko związane czasowo) szczepieniem [18,19].

Po szóste, na podstawie wyników testu biodystrybucji [20] należałoby wymagać dalszych badań w celu oceny krótko- i długoterminowego wpływu na większą liczbę tkanek zanim szczepionka zostanie dopuszczona do powszechnego użytku, zwłaszcza u dzieci, młodzieży i młodych dorosłych w wieku reprodukcyjnym. Biodystrybucja białka kolca, które jest tworzone przez komórki zaszczepionego organizmu, powinna być dokładnie zmapowana oraz oceniona na co najmniej dwóch modelach zwierzęcych, z których jeden nie jest modelem gryzoni, ponieważ gryzonie mają znacznie niższy poziom powinowactwa wiązania receptora ACE2 (receptor dla białka kolca SARS-CoV-2) niż ludzie i w rezultacie wpływ białka kolca może zostać niedoszacowany. Następnie dystrybucja białka kolca u ludzi powinna być oceniona na niewielkiej próbie w badaniu klinicznym fazy 1. W przedstawionym raporcie dot. biodystrybucji znajduje się jednak niepokojący zapis, że „nie przeprowadzono tradycyjnych badań farmakokinetycznych lub biodystrybucji dla tej szczepionki (BNT162b2). Jeśli po raz pierwszy taka innowacyjna technologia szczepionek została wprowadzona do szerokiej dystrybucji wśród ludzi, a japońskie dane dotyczące biodystrybucji wykazały dowody na rozległe rozprzestrzenianie się materiału imitującego szczepionkę w organizmie biorcy [18,20], to należy zapytać, dlaczego ten eksperymentalny preparat został dopuszczony do stosowania bez wcześniejszego przeprowadzenia kluczowego badania biodystrybucji [18].

[a] Partinen, Markku, et al. „Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland.” PloS one 7.3 (2012): e33723. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033723

[b] Medical Products Agency (Lakemedelsverket) (2010) The MPA investigates reports of narcolepsy in patients vaccinated with Pandemrix. Available: http://wwwlakemedelsverketse/english/All-news/NYHETER-2010/The-MPA-investigates-reports-of-narcolepsy-in-patients-vaccinated-with-Pandemrix/. Accessed 2012 Feb 23.

[c] WHO (2010) Pandemrix vaccine and cases of narcolepsy. Available: http://wwwwhoint/immunization_standards/vaccine_quality/pandemrix_narcolepsy/en/. Accessed 2012 Feb 23.

[d] THL (2010) National Institute for Health and Welfare recommends discontinuation of Pandemrix vaccinations. Finnish National Institute for Health and Welfare website. Available: http://wwwthlfi/en_US/web/en/pressrelease?id=22930. Accessed 2012 Feb 23.

[e] Ahmed, Syed Sohail, et al. „Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2.” Science translational medicine 7.294 (2015): 294ra105-294ra105

[1] Xu, Shuqin, et al. „Mrna vaccine era—Mechanisms, drug platform and clinical prospection.” International Journal of Molecular Sciences 21.18 (2020): 6582. https://www.mdpi.com/ijms/ijms-21-06582/article_deploy/html/images/ijms-21-06582-g001.png

[2] https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine

[3] Frenck Jr, Robert W., et al. „Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents.” New England Journal of Medicine (2021). https://www.nejm.org/doi/full/10.1056/NEJMoa2107456

[4] https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-receive-first-authorization-european

[5] https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine

[6] https://www.nejm.org/doi/suppl/10.1056/NEJMoa2107456/suppl_file/nejmoa2107456_protocol.pdf

[7] https://www.fda.gov/media/144245/download

[8] https://clinicaltrials.gov/ct2/show/NCT04368728

[9]  https://www.ema.europa.eu/en/documents/product-information/comirnaty-epar-product-information_pl.pdf

[10] https://edition.cnn.com/2021/04/01/health/pfizer-covid-vaccine-efficacy-six-months-bn/index.html

[11] Kesselheim, Aaron S., et al. „An Overview Of Vaccine Development, Approval, And Regulation, With Implications For COVID-19: Analysis reviews the Food and Drug Administration’s critical vaccine approval role with implications for COVID-19 vaccines.” Health Affairs 40.1 (2021): 25-32. https://www.healthaffairs.org/doi/pdf/10.1377/hlthaff.2020.01620

[12] Avorn J, Kesselheim AS. Up is down—pharmaceutical industry caution vs. federal acceleration of Covid-19 vaccine approval. N Engl J Med. 2020 Sep 15. https://www.nejm.org/doi/10.1056/NEJMp2029479

[13] https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/how-are-vaccines-developed-authorised-and-put-market_en#approving-the-vaccines-in-the-eu

[14] Larson, Kathryn F., et al. „Myocarditis after BNT162b2 and mRNA-1273 Vaccination.” Circulation (2021). https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.055913

[15] Blumenthal, K.G. et al. Acute Allergic Reactions to mRNA COVID-19 Vaccines. Jama 325, 1562-1565 (2021). https://jamanetwork.com/journals/jama/article-abstract/2777417

[16] Selvaraj, G., Kaliamurthi, S., Peslherbe, G.H. & Wei, D.Q. Are the Allergic Reactions of COVID-19Vaccines Caused by mRNA Constructs or Nanocarriers? Immunological Insights. Interdisciplinarysciences, computational life sciences 13, 344-347 (2021). https://link.springer.com/article/10.1007%2Fs12539-021-00438-3

[17] https://labeling.pfizer.com/ShowLabeling.aspx?id=14471

[18] https://www.canadiancovidcarealliance.org/wp-content/uploads/2021/06/2021-06-15-children_and_covid-19_vaccines_full_guide.pdf

[19] Doshi, P. Covid-19 vaccines: In the rush for regulatory approval, do we need more data? BMJ 373, n1244 (2021). https://www.bmj.com/content/373/bmj.n1244https://www.bmj.com/content/373/bmj.n1244

[20] Pfizer. SARS-CoV- 2 mRNA Vaccine (BNT162, PF-07302048) 2.6.4 Yakubutsu dōtai shiken no gaiyō bun [summary of pharmacokinetic studies] https://www.pmda.go.jp/drugs/2021/P20210212001/672212000_30300AMX00231_I100_1.pdf#page=16

VII
SPRZECIW ŚRODOWISK NAUKOWYCH

Wielu naukowców wyraziło swoje wątpliwości w zakresie szczepień dzieci przeciwko COVID-19 na łamach czasopism naukowych takich jak British Medical Journal [1] oraz The Lancet [2]. Warto również odnotować, że Narodowa Rada Zdrowia w Danii i Duńskie Towarzystwo Pediatryczne nie zdecydowały się na zalecenie szczepień dla dzieci w wieku 12-15 lat [3], a niemiecki komitet doradczy ds. szczepień (STIKO) nie zaleca stosowania szczepionki osobom w wieku 12-17 lat spoza grup ryzyka [4]. Szczepieniom dzieci <16 r.ż. sprzeciwiła się również niezależna i zrzeszająca lekarzy Publiczna Rada Kryzysowa w Izraelu [5]. Dyrektor niezależnej firmy zajmującej się badaniami medycznymi (The Evidence-Based Medicine Consultancy Ltd), której pracownicy naukowi są autorami prestiżowych przeglądów publikowanych w Cochrane Collaboration, po analizie działań niepożądanych zgłoszonych do Systemu „Yellow Card” w Wielkiej Brytanii uznał, że stopień zachorowalności i śmiertelności związany ze szczepionkami przeciwko COVID-19 jest bezprecedensowy i wezwał do zaprzestania programu szczepień do czasu przeprowadzana pełnej i niezależnej analizy bezpieczeństwa [6]. Otwarte listy do Prezydenta i Rządu RP w sprawie bezpieczeństwa szczepionek przeciwko COVID-19 kierowali również polscy lekarze i naukowcy [7,8]. W poradniku naukowym Canadian COVID Care Alliance przedstawiono uzasadnione obawy naukowe dotyczące szczepionek COVID-19 i wezwano do zaprzestania wdrażania programu szczepień dla dzieci, młodzieży i młodych dorosłych w wieku rozrodczym oraz do wymagania od producentów przeprowadzenia odpowiednich badań biodystrybucji i bezpieczeństwa, a następnie przeprowadzenia dokładnej ponownej oceny ryzyka COVID-19  w porównaniu z ryzykiem związanym z tymi eksperymentalnymi szczepionkami [9].

[1] Lavine, Jennie S., Ottar Bjornstad, and Rustom Antia. „Vaccinating children against SARS-CoV-2.” (2021). https://www.bmj.com/content/373/bmj.n1197

[2] Obaro, Stephen. „COVID-19 herd immunity by immunisation: are children in the herd?.” The Lancet Infectious Diseases 21.6 (2021): 758-759. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00212-7/fulltext

[3] https://ugeskriftet.dk/nyhed/formand-paediaterne-vi-mangler-viden-kunne-vaccinere-yngre-teenagere

[4] https://www.euronews.com/2021/06/10/us-health-coronavirus-germany-biontech

[5] https://www.pecc.org.il/docs/vacunder16eng.pdf

[6] https://b3d2650e-e929-4448-a527-4eeb59304c7f.filesusr.com/ugd/593c4f_b2acdef3774b4e9ca06e9fae526fd5cd.pdf

[7] https://b3d2650e-e929-4448-a527-4eeb59304c7f.filesusr.com/ugd/593c4f_b2acdef3774b4e9ca06e9fae526fd5cd.pdf

[8] https://instytutsprawobywatelskich.pl/trzy-pytania-do-ministra-zdrowia-w-sprawie-bezpieczenstwa-i-skutecznosci-szczepien-na-sars-cov-2/

[9] https://www.canadiancovidcarealliance.org/wp-content/uploads/2021/06/2021-06-15-children_and_covid-19_vaccines_full_guide.pdf